Kemampuan Berpikir Komputasi pada Pembelajaran Geometri Berbasis Geogebra ditinjau dari Gaya Kognitif

Penulis

  • Yulia Maftuhah Hidayati Universitas Muhammadiyah Surakarta, Indonesia
  • Berliani Ardelia Sukowati Universitas Muhammadiyah Surakarta, Indonesia
  • Windi Hastuti Universitas Muhammadiyah Surakarta, Indonesia
  • Sukimin Universitas Muhammadiyah Surakarta, Indonesia

DOI:

https://doi.org/10.31100/histogram.v9i1.4101

Kata Kunci:

Berpikir Komputasi, Geometri, Gaya Kognitif

Abstrak

Kemampuan berpikir komputasi memegang peran penting diera revolusi 4.0 dalam pembelajaran matematika. Gaya kognitif mempengaruhi kemampuan pemecahan masalah siswa. Tujuan dari penelitian ini adalah mengetahui kemampuan berpikir komputasional dalam pembelajaran geometri berbasis Geogebra dari gaya kognitif field independent (FI) serta field dependent (FD). Penelitian memakai desain studi kasus dan metodologi kualitatif. Tiga puluh enam siswa dari kelas XI di SMA N 1 Boyolali berpartisipasi dalam penelitian ini. Soal tes, penilaian gaya kognitif, serta wawancara merupakan metode yang diterapkan untuk mengumpulkan data. Peneliti memilih satu siswa FI serta FD dengan kategori tinggi berdasarkan nilai tes dan kuesioner gaya kognitif. Menurut temuan, kemampuan siswa untuk bernalar secara komputasi dipengaruhi oleh perbedaan antara tipe kognitif FI dan FD. Sementara siswa FD hanya dapat memenuhi indikator pengenalan pola serta algoritma berpikir, siswa FI dapat memenuhi semua penanda berpikir komputasional, termasuk abstraksi, pengenalan pola, algoritma berpikir, juga generalisasi.

 

Referensi

Agoestanto, A., Sukestiyarno, Y. L., Isnarto, Rochmad, & Lestari, M. D. (2019). The Position and Causes of Students Errors in Algebraic Thinking Based on Cognitive Style. International Journal of Instruction, 12(1), 1431–1444. https://doi.org/10.29333/iji.2019.12191a

Aminah, N., Sukestiyarno, Y. L., Wardono, W., & Cahyono, A. N. (2022). Computational Thinking Process of Prospective Mathematics Teacher in Solving Diophantine Linear Equation Problems. European Journal of Educational Research, 11(3), 1495–1507. https://doi.org/10.12973/eu-jer.11.3.1495

Anggraeni, E. D., & Dewi, N. R. (2021). Kajian Teori: Pengembangan Bahan Ajar Matematika Berbantuan GeoGebra untuk Meningkatkan Kemampuan Pemecahan Masalah Matematis melalui Model Pembelajaran Preprospec Berbantuan TIK pada Materi Bangun Ruang Sisi Datar. PRISMA, Prosiding Seminar Nasional Matematika, 4, 179–188. https://journal.unnes.ac.id/sju/prisma/article/view/44959/18302

Ardi, S. D. K., & Masduki, M. (2023). Eksplorasi Berpikir Aljabar Siswa Kelas 5 dalam Menyelesaikan Soal Pemodelan. Jurnal Tadris Matematika, 6(1), 85–100. https://doi.org/10.21274/jtm.2023.6.1.85-100

Azahra, M., & Subekti, F. E. (2024). Kemampuan Pemecahan Masalah Matematis Berdasarkan Gaya Kognitif pada Siswa. Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika, 7(1), 475–484. https://doi.org/10.30605/proximal.v7i1.4117

Bintoro, H. S., Sukestiyarno, Y. L., Mulyono, & Walid. (2021). The Spatial Thinking Process of the Field-Independent Students Based on Action-Process-Object-Schema Theory. European Journal of Educational Research, 10(4), 1807–1823. https://doi.org/10.12973/EU-JER.10.4.1807

Bocconi, S., Chioccariello, A., & Earp, J. (2018). The Nordic Approach to Introducing Computational Thinking and Programming in Compulsory Education. https://doi.org/10.17471/54007

Buckley, J., Seery, N., & Canty, D. (2019). Investigating the Use of Spatial Reasoning Strategies in Geometric Problem Solving. International Journal of Technology and Design Education, 29(2), 341–362. https://doi.org/10.1007/s10798-018-9446-3

Clune, M. (2019). Computational Thinking in Primary Mathematics. Set: Research Information for Teachers, 3, 43–50. https://doi.org/10.18296/set.0151

Curzon, P., Bell, T., Waite, J., & Dorling, M. (2019) Computational Thinking. In S. A. Fincher & A. V. Robins (Eds.) The Cambridge Handbook of Computing Education Research. Cambridge University Press.

Elicer, R., Tamborg, A. L., Bråting, K., & Kilhamn, C. (2023). Comparing the Integration of Programming and Computational Thinking into Danish and Swedish Elementary Mathematics Curriculum Resources. Iron and Steel Technology, 11(3), 77–102. https://doi.org/10.31129/LUMAT.11.3.1940

Hanid, M. F. A., Said, M. N. H. M., Yahaya, N., & Abdullah, Z.. (2022). Effects of Augmented Reality Application Integration with Computational Thinking in Geometry Topics. Education and Information Technologies, 27(7), 9485-9521. https://doi.org/10.1007/s10639-022-10994-w

Juandi, D., Kusumah, Y. S., Tamur, M., Perbowo, K. S., & Wijaya, T. T. (2021). A Meta-Analysis of Geogebra Software Decade of Assisted Mathematics Learning: What to Learn and Where to Go? Heliyon, 7(5), e06953. https://doi.org/10.1016/j.heliyon.2021.e06953

Krogh, S., Annette, N., Bjerke, H., & Mifsud, L. (2022). Computational Thinking in the Primary Mathematics Classroom : a Systematic Review. Digital Experiences in Mathematics Education, 1, 27–49. https://doi.org/10.1007/s40751-022-00102-5

Lockwood, E., Asay, A., DeJarnette, A. F., & Thomas, M. (2016). Algorithmic Thinking: an Initial Characterization of Computational Thinking in Mathematics. 38th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, 1588–1595.

Maharani, S., Agustina, Z. F., & Kholid, M. N. (2021). Exploring the Prospective Mathematics Teachers Computational Thinking in Solving Pattern Geometry Problem. AL-ISHLAH: Jurnal Pendidikan, 13(3), 1756–1767. https://doi.org/10.35445/alishlah.v13i3.1181

Masalimova, A. R., Mikhaylovsky, M. N., Grinenko, A. V., Smirnova, M. E., Andryushchenko, L. B., Kochkina, M. A., & Kochetkov, I. G. (2019). The Interrelation between Cognitive Styles and Copying Strategies among Student Youth. Eurasia Journal of Mathematics, Science and Technology Education, 15(4). https://doi.org/10.29333/ejmste/103565

Milicic, G., Wetzel, S., & Ludwig, M. (2020). Generic Tasks for Algorithms. Future Internet, 12(9), 152. https://doi.org/10.3390/fi12090152

Motahari, M. S., & Norouzi, M. (2015). The Difference between Field Independent and Field Dependent Cognitive Styles regarding Translation Quality. Theory and Practice in Language Studies, 5(11), 2373. https://doi.org/10.17507/tpls.0511.23

Muyassaroh, K. A., & Masduki, M. (2023). Profil Berpikir Aljabar Siswa dalam Menyelesaikan Permasalahan Generalisasi dan Berpikir Dinamis Ditinjau dari Gaya Kognitif FI-FD. FIBONACCI: Jurnal Pendidikan Matematika dan Matematika, 9(1), 27-42. https://doi.org/10.24853/fbc.9.1.27-42

Namli, N. A., & Aybek, B. (2022). An Investigation of The Effect of Block-Based Programming and Unplugged Coding Activities on Fifth Graders’ Computational Thinking Skills, Self-Efficacy and Academic Performance. Contemporary Educational Technology, 14(1), 1–16. https://doi.org/10.30935/cedtech/11477

Nuraida, N., Aripin, U., & Pereira, J. (2022). Students Mathematic Problem Solving Process in Two Variable Linear Equation Systems from Cognitive Field Dependent Style. IndoMath: Indonesia Mathematics Education, 5(1), 1-12. https://doi.org/10.30738/indomath.v5i1.17

OECD. (2019). PISA 2018 Results (Volume I): What Students Know and Can Do. OECD Publishing. https://doi.org/10.1787/5f07c754-en

Rejeki, S., & Rahmasari, L. (2022). Students’ Problem-Solving Ability in Number Patterns Topic Viewed from Cognitive Styles. Jurnal Elemen, 8(2), 587–604. https://doi.org/10.29408/jel.v8i2.5699

Rismen, S., Juwita, R., & Devinda, U. (2020). Profil Kemampuan Pemecahan Masalah Matematika Siswa Ditinjau dari Gaya Kognitif Reflektif. Jurnal Cendekia: Jurnal Pendidikan Matematika, 4(1), 163–171. https://doi.org/10.31004/cendekia.v4i1.159

Rowe, E., Asbell-Clarke, J., Baker, R., Gasca, S., Bardar, E., & Scruggs, R. (2018). Labeling Implicit Computational Thinking in Pizza Pass Gameplay. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. 1-6. https://doi.org/10.1145/3170427.3188541

Safitri, A., & Khotimah, R. P. (2023). Kemampuan Literasi Matematika Peserta Didik dalam Menyelesaikan Soal PISA Konten Space and Shape Ditinjau dari Gaya Kognitif. Jambura Journal of Mathematics Education, 4(1), 24–34. https://doi.org/10.34312/jmathedu.v4i1.18745

Selby, C., & Woollard, J. (2013). The Developing Concept of “Computational Thinking.” Informatics in Education, 1–3. http://eprints.soton.ac.uk/401033/1/161002TableofC%26CT.pdf

Sondakh, D. E., Osman, K., & Zainudin, S. (2020). A Proposal for Holistic Assessment of Computational Thinking for Undergraduate: Content Validity. European Journal of Educational Research, 9(1), 33–50. https://doi.org/10.12973/eu-jer.9.1.33

Sudia, M., & Lambertus. (2017). Profile of High School Student Mathematical Reasoning to Solve the Problem Mathematical Viewed from Cognitive Style. International Journal of Education and Research, 5(6), 163–174. https://www.ijern.com/journal/2017/June-2017/14.pdf

Sutama, S., Anif, S., Prayitno, H. J., Narimo, S., Fuadi, D., Sari, D. P., & Adnan, M. (2021). Metacognition of Junior High School Students in Mathematics Problem Solving Based on Cognitive Style. Asian Journal of University Education, 17(1), 134–144. https://doi.org/10.24191/ajue.v17i1.12604

Verawati, N. N. S. P., Hikmawati, Prayogi, S., & Bilad, M. R. (2021). Reflective Practices in Inquiry Learning: Its Effectiveness in Training Pre-Service Teachers’ Critical Thinking Viewed from Cognitive Styles. Jurnal Pendidikan IPA Indonesia, 10(4), 505–514. https://doi.org/10.15294/jpii.v10i4.31814

Zhang, Y. (2023). Defining Computational Thinking as an Evident Tool in Problem-Solving: Comparative Research on Chinese and Canadian Mathematics Textbooks. ECNU Review of Education, 6(4), 677–699. https://doi.org/10.1177/20965311231158393

Unduhan

Diterbitkan

2025-03-31

Citation Check