KEMAMPUAN BERPIKIR KOMPUTASI PADA PEMBELAJARAN GEOMETRI BERBASIS GEOGEBRA DITINJAU DARI GAYA KOGNITIF

Authors

  • Yulia Maftuhah Hidayati Universitas Muhammadiyah Surakarta, Indonesia
  • Berliani Ardelia Sukowati Universitas Muhammadiyah Surakarta, Indonesia
  • Windi Hastuti Universitas Muhammadiyah Surakarta, Indonesia
  • Sukimin Universitas Muhammadiyah Surakarta, Indonesia

DOI:

https://doi.org/10.31100/histogram.v9i1.4101

Keywords:

Berpikir Komputasi, Geometri, Gaya Kognitif

Abstract

ABSTRAK

Di era revolusi industri 4.0, keterampilan berpikir komputasi memainkan peran krusial dalam pembelajaran matematika. Salah satu faktor yang memengaruhi kemampuan pemecahan masalah siswa adalah gaya kognitif mereka. Penelitian ini bertujuan untuk mengeksplorasi kemampuan berpikir komputasi dalam pembelajaran Geometri berbasis GeoGebra, dengan mempertimbangkan perbedaan gaya kognitif Field Independent (FI) dan Field Dependent (FD). Metode yang digunakan adalah kualitatif dengan desain studi kasus, melibatkan 36 siswa kelas XI di SMA N 1 Boyolali. Penelitian ini menggunakan instrumen pengumpulan data berupa soal tes, angket gaya kognitif, dan wawancara. Berdasarkan hasil tes dan angket gaya kognitif, peneliti memilih masing-masing 1 siswa FI dan 1 siswa FD dengan kategori tinggi. Hasil penelitian menunjukkan terdapat perbedaan gaya kognitif terhadap kemampuan berpikir komputasi. Siswa FI mampu mencapai semua indikator, yaitu abstraksi, pengenalan pola, pemikiran algoritma, dan generalisasi, sementara siswa FD hanya memenuhi indikator pengenalan pola dan pemikiran algoritma.

 

ABSTRACT

In the era of the Industrial Revolution 4.0, computational thinking skills play a crucial role in mathematics learning. One factor influencing students' problem-solving abilities is their cognitive style. This study aims to explore computational thinking abilities in GeoGebra-based Geometry learning, considering the differences between Field Independent (FI) and Field Dependent (FD) cognitive styles. The research employed a qualitative case study design involving 36 eleventh-grade students at SMA N 1 Boyolali. Data were collected using tests, cognitive style questionnaires, and interviews. Based on the results, one FI student and one FD student, both categorised as high achievers, were selected for further analysis. The findings indicated differences in computational thinking abilities based on cognitive styles. FI students achieved all indicators—abstraction, pattern recognition, algorithmic thinking, and generalisation-whereas FD students only fulfilled the indicators of pattern recognition and algorithmic thinking.

References

Agoestanto, A., Sukestiyarno, Y. L., Isnarto, Rochmad, & Lestari, M. D. (2019). The Position and Causes of Students Errors in Algebraic Thinking Based on Cognitive Style. International Journal of Instruction, 12(1), 1431–1444. https://doi.org/10.29333/iji.2019.12191a

Aminah, N., Sukestiyarno, Y. L., Wardono, W., & Cahyono, A. N. (2022). Computational Thinking Process of Prospective Mathematics Teacher in Solving Diophantine Linear Equation Problems. European Journal of Educational Research, 11(3), 1495–1507. https://doi.org/10.12973/eu-jer.11.3.1495

Anggraeni, E. D., & Dewi, N. R. (2021). Kajian Teori: Pengembangan Bahan Ajar Matematika Berbantuan GeoGebra untuk Meningkatkan Kemampuan Pemecahan Masalah Matematis melalui Model Pembelajaran Preprospec Berbantuan TIK pada Materi Bangun Ruang Sisi Datar. PRISMA, Prosiding Seminar Nasional Matematika, 4, 179–188. https://journal.unnes.ac.id/sju/prisma/article/view/44959/18302

Ardi, S. D. K., & Masduki, M. (2023). Eksplorasi Berpikir Aljabar Siswa Kelas 5 dalam Menyelesaikan Soal Pemodelan. Jurnal Tadris Matematika, 6(1), 85–100. https://doi.org/10.21274/jtm.2023.6.1.85-100

Azahra, M., & Subekti, F. E. (2024). Kemampuan Pemecahan Masalah Matematis Berdasarkan Gaya Kognitif pada Siswa. Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika, 7(1), 475–484. https://doi.org/10.30605/proximal.v7i1.4117

Bintoro, H. S., Sukestiyarno, Y. L., Mulyono, & Walid. (2021). The Spatial Thinking Process of the Field-Independent Students Based on Action-Process-Object-Schema Theory. European Journal of Educational Research, 10(4), 1807–1823. https://doi.org/10.12973/EU-JER.10.4.1807

Bocconi, S., Chioccariello, A., & Earp, J. (2018). The Nordic Approach to Introducing Computational Thinking and Programming in Compulsory Education. https://doi.org/10.17471/54007

Buckley, J., Seery, N., & Canty, D. (2019). Investigating the Use of Spatial Reasoning Strategies in Geometric Problem Solving. International Journal of Technology and Design Education, 29(2), 341–362. https://doi.org/10.1007/s10798-018-9446-3

Clune, M. (2019). Computational Thinking in Primary Mathematics. Set: Research Information for Teachers, 3, 43–50. https://doi.org/10.18296/set.0151

Curzon, P., Bell, T., Waite, J., & Dorling, M. (2019) Computational Thinking. In S. A. Fincher & A. V. Robins (Eds.) The Cambridge Handbook of Computing Education Research. Cambridge University Press.

Elicer, R., Tamborg, A. L., Bråting, K., & Kilhamn, C. (2023). Comparing the Integration of Programming and Computational Thinking into Danish and Swedish Elementary Mathematics Curriculum Resources. Iron and Steel Technology, 11(3), 77–102. https://doi.org/10.31129/LUMAT.11.3.1940

Hanid, M. F. A., Said, M. N. H. M., Yahaya, N., & Abdullah, Z.. (2022). Effects of Augmented Reality Application Integration with Computational Thinking in Geometry Topics. Education and Information Technologies, 27(7), 9485-9521. https://doi.org/10.1007/s10639-022-10994-w

Juandi, D., Kusumah, Y. S., Tamur, M., Perbowo, K. S., & Wijaya, T. T. (2021). A Meta-Analysis of Geogebra Software Decade of Assisted Mathematics Learning: What to Learn and Where to Go? Heliyon, 7(5), e06953. https://doi.org/10.1016/j.heliyon.2021.e06953

Krogh, S., Annette, N., Bjerke, H., & Mifsud, L. (2022). Computational Thinking in the Primary Mathematics Classroom : a Systematic Review. Digital Experiences in Mathematics Education, 1, 27–49. https://doi.org/10.1007/s40751-022-00102-5

Lockwood, E., Asay, A., DeJarnette, A. F., & Thomas, M. (2016). Algorithmic Thinking: an Initial Characterization of Computational Thinking in Mathematics. 38th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, 1588–1595.

Maharani, S., Agustina, Z. F., & Kholid, M. N. (2021). Exploring the Prospective Mathematics Teachers Computational Thinking in Solving Pattern Geometry Problem. AL-ISHLAH: Jurnal Pendidikan, 13(3), 1756–1767. https://doi.org/10.35445/alishlah.v13i3.1181

Masalimova, A. R., Mikhaylovsky, M. N., Grinenko, A. V., Smirnova, M. E., Andryushchenko, L. B., Kochkina, M. A., & Kochetkov, I. G. (2019). The Interrelation between Cognitive Styles and Copying Strategies among Student Youth. Eurasia Journal of Mathematics, Science and Technology Education, 15(4). https://doi.org/10.29333/ejmste/103565

Milicic, G., Wetzel, S., & Ludwig, M. (2020). Generic Tasks for Algorithms. Future Internet, 12(9), 152. https://doi.org/10.3390/fi12090152

Motahari, M. S., & Norouzi, M. (2015). The Difference between Field Independent and Field Dependent Cognitive Styles regarding Translation Quality. Theory and Practice in Language Studies, 5(11), 2373. https://doi.org/10.17507/tpls.0511.23

Muyassaroh, K. A., & Masduki, M. (2023). Profil Berpikir Aljabar Siswa dalam Menyelesaikan Permasalahan Generalisasi dan Berpikir Dinamis Ditinjau dari Gaya Kognitif FI-FD. FIBONACCI: Jurnal Pendidikan Matematika dan Matematika, 9(1), 27-42. https://doi.org/10.24853/fbc.9.1.27-42

Namli, N. A., & Aybek, B. (2022). An Investigation of The Effect of Block-Based Programming and Unplugged Coding Activities on Fifth Graders’ Computational Thinking Skills, Self-Efficacy and Academic Performance. Contemporary Educational Technology, 14(1), 1–16. https://doi.org/10.30935/cedtech/11477

Nuraida, N., Aripin, U., & Pereira, J. (2022). Students Mathematic Problem Solving Process in Two Variable Linear Equation Systems from Cognitive Field Dependent Style. IndoMath: Indonesia Mathematics Education, 5(1), 1-12. https://doi.org/10.30738/indomath.v5i1.17

OECD. (2019). PISA 2018 Results (Volume I): What Students Know and Can Do. OECD Publishing. https://doi.org/10.1787/5f07c754-en

Rejeki, S., & Rahmasari, L. (2022). Students’ Problem-Solving Ability in Number Patterns Topic Viewed from Cognitive Styles. Jurnal Elemen, 8(2), 587–604. https://doi.org/10.29408/jel.v8i2.5699

Rismen, S., Juwita, R., & Devinda, U. (2020). Profil Kemampuan Pemecahan Masalah Matematika Siswa Ditinjau dari Gaya Kognitif Reflektif. Jurnal Cendekia: Jurnal Pendidikan Matematika, 4(1), 163–171. https://doi.org/10.31004/cendekia.v4i1.159

Rowe, E., Asbell-Clarke, J., Baker, R., Gasca, S., Bardar, E., & Scruggs, R. (2018). Labeling Implicit Computational Thinking in Pizza Pass Gameplay. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. 1-6. https://doi.org/10.1145/3170427.3188541

Safitri, A., & Khotimah, R. P. (2023). Kemampuan Literasi Matematika Peserta Didik dalam Menyelesaikan Soal PISA Konten Space and Shape Ditinjau dari Gaya Kognitif. Jambura Journal of Mathematics Education, 4(1), 24–34. https://doi.org/10.34312/jmathedu.v4i1.18745

Selby, C., & Woollard, J. (2013). The Developing Concept of “Computational Thinking.” Informatics in Education, 1–3. http://eprints.soton.ac.uk/401033/1/161002TableofC%26CT.pdf

Sondakh, D. E., Osman, K., & Zainudin, S. (2020). A Proposal for Holistic Assessment of Computational Thinking for Undergraduate: Content Validity. European Journal of Educational Research, 9(1), 33–50. https://doi.org/10.12973/eu-jer.9.1.33

Sudia, M., & Lambertus. (2017). Profile of High School Student Mathematical Reasoning to Solve the Problem Mathematical Viewed from Cognitive Style. International Journal of Education and Research, 5(6), 163–174. https://www.ijern.com/journal/2017/June-2017/14.pdf

Sutama, S., Anif, S., Prayitno, H. J., Narimo, S., Fuadi, D., Sari, D. P., & Adnan, M. (2021). Metacognition of Junior High School Students in Mathematics Problem Solving Based on Cognitive Style. Asian Journal of University Education, 17(1), 134–144. https://doi.org/10.24191/ajue.v17i1.12604

Verawati, N. N. S. P., Hikmawati, Prayogi, S., & Bilad, M. R. (2021). Reflective Practices in Inquiry Learning: Its Effectiveness in Training Pre-Service Teachers’ Critical Thinking Viewed from Cognitive Styles. Jurnal Pendidikan IPA Indonesia, 10(4), 505–514. https://doi.org/10.15294/jpii.v10i4.31814

Zhang, Y. (2023). Defining Computational Thinking as an Evident Tool in Problem-Solving: Comparative Research on Chinese and Canadian Mathematics Textbooks. ECNU Review of Education, 6(4), 677–699. https://doi.org/10.1177/20965311231158393

Published

2025-03-31

Citation Check